
9, instantaneous velocity distribution at instant 
of inrush ; 

K instantaneous approach distance; 

a mean approach distance; 

H+, dimensionless mean approach distance [Hf 
= X&*/v-J; 

k, thermal conductivity; 

pr, Prandtl number; 
P HI distribution in approach distances; 

pw distribution in initial profile; 

Z, mean wall heat flux; 

& frequency of burst process ; 
S, mean frequency of burst process ; 
-i;, mean temperature distribution; 
Ti, mean temperature at instant of inrush; 

To, mean wall tem~rature; 

T+, dimensionless mean tem~rature distri- 

bution CT+ = (To - TpcJJ*/~]; 

% instantaneous velocity distribution; 
+ u , dimensionless mean velocity distribution 

[u’ = i/v*]; 

u, mathematical step function ; 
ui, mean velocity at instant of inrush; 

VI!> bulk stream velocity; 

u*, friction velocity [U* = &] ; 
Y, distance from wall; 

Y&:. dimensionless thickness of hydrodynamic 
wall region ; 

YT+, dimensionless thickness of thermal wall 
region. 
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Abstract-An efficient foTmu~at~on of the surface rejuvenation model of the turbulent burst process is 
coupled with the classical approach for the turbulent core to produce inner laws for the dimensionless 
velocity u + and temperature T+ distributions for fully turbulent flow. The predictions for u+ are found to be 
in good agreement with the well known inner law by van Driest. In addition, the predictions for Tf are 

shown to be in excellent agreement with experimental data for a wide range of Prandtl numbers. 

NOMENCLATURE 

Greek symbols 

Ql, eddy thermal diffusivity ; 
E fll, eddy momentum diffusivity; 
Y> &JRJs;lv; 

4, age distribution; 
8, instantaneous age of individual burst event; 
I-1, viscosity; 
7% apparent total mean shear stress; 
f0, mean wall shear stress ; 

72, Reynolds stress ; 
a, thermal diffusivity; 

l% = z&&. 

Superscript 

-9 mean. 

INTRODUCTION 

INNER laws have recently been developed for u+ and 
T+ for fully turbulent flow which are based on the 
nontraditional surface renewal approach in which the 
burst process associated with wall turbulence is mod- 
eled. In accordance with the actual burst process 
reported in experimental studies [l, 21, the principle of 
surface renewal stipulates that fluid exchange in- 
termittently occurs between the region immediately 
adjacent to the wall and the turbulent core. During the 
period of time between inrush and ejection, unsteady 
moiecuIar momentum, mass and energy transport is 
assumed to govern. 

The surface renewal modeling concept has been 
coupled with an eddy diffusivity representation of the 
turbulent core to obtain convenient inner laws for fully 
turbulent flow of the form [3] 

u+ =$[I-erp(-&)I Y+ <yL (la) 

u+ =-tfnY+ + C 
K Y+ >Y; WI 

and 

(-%g] 
T+=llny’+A 

K 

Y+ < YT’ (2a) 

Y+ ~YT’ (2b) 

where UJU* N 16 and y,& N 46.8 for K = 0.4 and C 
= 5.5; y; and A are estabiish~ by equation (2a) by 

to99 
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merely requiring continuity in T+ and dT+/dy+. This 
simple inner law for uf lies somewhat below the 
familiar van Driest [4] and Spalding [S] equations, 
with a maximum difference being of the order of 6%. 
Similarly, equation (2) has been found to be in basic 

agreement with experimental data for Prandtl number 

Pr up to 5. However, because of the simplifying 
assumption that the fluid inrush proces? reaches all the 
way to the wall, the predictions for T+ slightly 
underpredict the data for moderate Pr, with the error 
increasing with Pr. To eliminate this inadequacy and 
to extend the applicability of the analysis to high Pr, 
the fact that the inrush process brings fluid to within 
varying small distances of the wall must be accounted 
for. 

The earliest model ofwall turbulence which includes 

the effect of the unreplenished layer of fluid which 
resides at the surface was developed by Harriott [6] in 

1962. To develop this surface rejuvenation model, 
Harriott generated a sequence of random approach 
distances H and residence times s- ’ by means of a 

monumental Monte Carlo technique. This approach 
was utilized in 1971 to develop predictions for the 

temperature distribution for high Prandtl number 

fluids [7]. A more efficient stochastic formulation of 

this generalized surface renewal model was developed 
by Bullin and Dukler [8] in 1972 and was applied to 

turbulent heat transfer by Rajagopal and Thomas [9] 
in 1974. However, the usefulness of this formulation is 
severely restricted by the need for extensive numerical 

iteration. Finally, in 1975 a new approach [lo] was set 
forth for the formulation-solution of the surface re- 
juvenation mode1 which leads to exact analytical 

solutions for the mean velocity and temperature 

distributions within the wall region for fully turbulent 

conditions. The objective of the present paper is to 
develop inner laws for u+ and T+ by coupling this 
efficient formulation of the surface rejuvenation model 
of the turbulent burst phenomenon with the classical 

eddy diffusivity formulation for the turbulent core. 

MATHEMATICAL FORMULATION SOLUTION 

The turbulent burst process is pictured in Fig. 1 for a 
single cycle. Such events are envisioned to occur over 
the entire surface with the burst frequency s and the 
approach distance H associated with the inrush phase 
varying randomly about mean value S and fi. To 
transform this physical picture of wall turbulence into 

Mean velmty profIle 
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a manageable mathematical format, certain modeling 
assumptions are employed. The mathematical for- 
mulation involves (1) an analysis of the instantaneous 
transport within the wall region during the period 
between inrush and ejection, (2) an evaluation of the 
spatial mean transport properties associated with the 

overall process, and (3) specification of key modeling 
parameters. The surface rejuvenation formulation 
solution for momentum transfer is developed in this 
section. This formulation follows the pattern of the 
analysis for energy transfer which was developed in 
reference [lo]. 

In.stantaneous transport 
Assuming that the convective and pressure gradient 

effects are small within the wall region for fully 
turbulent conditions, the unsteady momentum trans- 
fer within the wall region for the period between inrush 
and ejection takes the form 

clu i:u 

(^(i = I’ -I 1 1’ 
!_S) 

u = L’i[LJ(J-H)J + g(_~)[l - ~(,P-H)~J 

at H=O (4) 

u = 0 at y=O (5) 

ll= iJi as y--’ z 161 

where 6, is the age of the cycle, U, is the axial velocity of 

the inrushing fluid, g(y) is the instantaneous velocity 
distribution within the wall region at the first instant of 

inrush or renewal, and U(y - H) is a unit step function 
(see Fig. 1). (For the simplified case in which fluid is 
assumed to be brought into direct contact with the 
wall, H is set equal to zero, such that u = Ui at 0 = 0.) 

Mean transport 
The instantaneous transport equations are now 

transformed into the mean domain. This is the key to 
the eventual development of laws for u+ and T+ that 
apply to the wall region. By definition, the mean 

velocity distribution ii is expressed as 

where the distributions in the random variables U, s, H 
and g(y) are represented by d(Q), P,(s), P,(H) and 

P&l). The age, frequency, and approach distance 

Instantaneous velocity profIle 
pnvlsloned to occur at first 

mstant of rejuventation 

FIG. 1. Picture of the turbulent burst process. 
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distributions are approximated by (10) 

4(e) = Sexp( -Se) (8) 

P*(s) = - ; -$j- = ’ d4(e) Sexp(-Se) (9) 

P,(H)=aexp --i 
( > 

Accordingly, equations (3)-(6) are transformed into 
the mean domain by multiplying each term by ~/~(@de, 
P,(g)dg and P,(H)dH, and then integrating. 

Operating first with respect to 0, equations (3)-(6) 
are transformed into the form 

t-j - g(y)[l - U(Y-WI 

- U,[U(y-H)] =; $ (11) 

where 

i=o at y=O (12) 

ti= Ui as y-+00 (13) 

;=i 
l 

II 
a u exp( - se)de = cif+) (14) 

0 

and g(u) is the Laplace transform with respect to 0 of 
the instantaneous profile u. 

Operating next with respect to g, equation (11) 
becomes 

li - g(y)[I - U(Y-WI 

- Ui[U(y-H)] = 5 ~ (15) 

where 

s 

ru 
$= P&K dg. (16) 

0 

Finally, operating with respect to H, equation (15) 
and the boundary conditions are transformed into the 
mean domain. 

U - g(y)exp -i 
-0 

-Ui[l-exp(-$]=f$ (17) 

ii=0 at y=O 

u= ui as y-too 

The use of equations (8) and (9) result in 

g(y) = u 

such that equation (17) reduces to 

(18) 

(19) 

(20) 

(u_ Ui)[l-exp(-;)I=: $- (21) 

The analytical solution to this type of ordinary 
differential equation has been obtained by utilizing the 
substitutions JI = U- U1, Z = exp[ - y/(2@], and 5 

= 2ZB,,@ [lo]. The final solution for the mean 
velocity distribution takes the form 

:= 1 - J2,[%ev(-$)I& (22) 

where y = J?,,$ and Jzy is a Bessel function of the 
first kind and 2y order. It follows that the mean wall 
shear stress f. becomes 

dti 
70=W&, 

S J2y-1W - Jzy+1&4 =pui y J 2J2,W ’ 
(23) 

A similar analysis of the energy transfer associated 
with the burst mechanism gives rise to an expression 
for the mean temperature distribution within the wall 
region of the form [lo] 

where fi = fi,,& = yfi. The mean wall heat flux 

4;; is given by 

7 q. = _kdr 
dy o 

= k(To_T,) 

J 

; 52~-1W) - J,B+IW). 

252&Y) 
(25) 

Equation (25) has been found to be in excellent 
agreement with the previous numerical formulation- 
solutions by Harriott [6], Thomas et al. [7], Bullin and 
Dukler [8] and Rajagopal and Thomas [9]. 

SpeciJication of modeling parameters 
The surface rejuvenation model of wall turbulence 

involves the four modeling parameters Ui, 5, B and T,. 
However, to produce inner laws for u+ and T+, only 
two of these parameters need be specified. This point 
will be expanded upon in the following section. 

DEVELOPMENT OF INNER LAWS 

The solutions given in the previous section for the 
mean velocity and temperature distributions within 
the wall region are now coupled with the classical 
approach to obtain laws for a+ and T+ for the entire 
inner region. 

Inner laws for u+ 
To obtain an expression for u+ near the wall, 

equations (22) and (23) are combined, with the result 

u+ _ 2~ J2,CW - J2,[2y exp(-y+/2H+)] _- 
Y J2,-I(%) - J2,+,(W 

Hydrodynamic wall region (26a) 

Note that by coupling these two equations, Ui has been 
eliminated, such that only S and Z? remain to be 
specified. 



Because of the modeling assumptions employed in 
the development of equation (26a), this expression 
only applies to the wall region. To develop a law that 
extends into the turbulent core, equation (76a) is 

interfaced with the classical eddy diffusivity approach. 
The eddy diffusivity is generally approximated by 

1.m c/q’ (27) 
\’ 

in the intermediate region for fully turbulent flow with 
small pressure gradients ; ti is approximately equal to 

0.40 for internal Row and 0.41 for boundary layer flow. 
With this input for >I,,,, the classical approach gives rise 
to the familiar logarithmic law for u+ in the in- 

termediate zone. 

du+ = 
v 

Uf Z 
1 

In 1:+ + C Turbulent core. (26b) 
K 

Whereas K is strictly dependent upon the eddy 
transport mechanism within the turbulent core, C is a 

function of the wall turbulence, and as such, is related 
to the burst modeling parameters sand I?. To close the 
analysis, two of these three parameters must be 

specified. Based on the experimental flow visualization 
study by Popovich and Hummel [ll], the dimension- 

less mean approach distance H+ is set equal to 5.0. 
Whereas limited experimental data are available for 
the mean burst frequency S, the parameter C is quite 

well established for fully turbulent conditions (C rr 5.5 

for internal flows; C = 5.0 for boundary layer flows). 

Therefore, C will be specified instead of S. 

To couple the surface rejuvenation model with the 
classical approach, continuity is required in both u+ 
and du+/dv+ at the point of interface y$, between 

equations (26a) and (26b). With C = 5.5, K = 0.4 and 
H+ = 5, this approximate interfacing criterion is satis- 
fied for a value of y equal to about 0.433. The point of 

interface y,; is 35. 
Predictions for u+ given by equation (26) with i’ 

= 0.433 and JJ$ = 35 are shown together with experi- 
mental data in Fig. 2. For purpose of comparison, the 
surface renewal expression given by equation (1) and 
the van Driest [4] equation are also shown. 

20 - 

+> IO- 

Experimental data by 

Llndgren [I91 

Surface rejuvenation 
equatmn [26] 

Inner luwfor T’ 

To obtain an expression for the dimensionless 

temperature distribution T+ within the wall region. 
equations (24) and (25) are combined. This step gives 

Thermal wall region i-‘&i) 

where fl = yJ’Pr. Note that no unknowns appear III 
this equation. Throughout the remainder of the inner 

region, the classical approach gives 

Pr + Pr! 

(29) 

where the turbulent Prandtl number Pr, is apprtrx- 
imately equal to a constant of the order of unity. 

Following through with this integration outside the 
thermal wall region with Pr, set equal to unity. T * is 
given by 

TC =iln_r’ + A Turbulent core (2Sb) 
K 

for moderate to high Prandtl number fluids. .4 ib <i 

function of the energy transfer within the wall region, 

which is fully specified by equation (28a). To approx- 
imate A and the point of interface $, equations (28ai 
and (28b) are simply coupled at the location at which 
the gradients dT+/dy’ are equal. With 7 set equal to 
0.433 on the basis of the analysis of momentum 
transfer, y: and A are obtained for various values of 

Pr. The resulting predictions for J; and A are given m 
Fig. 3. The composite inner law for TC represented by 
equation (28) is compared with experimental data and 
with equation (2) in Fig. 4. 

100:’ 
I 

FIG;. 2. Inner laws for u’ FIG. 3. Predictions for A and y; 



The surface rejuvenation model of wall turbulence 1103 

500 

c 

Experimental data 

Pr Symbol Reference 

64.0 - - - - - Slarciauskas 

et 01. [201 

14.3 0 Gowen and Smith [21] 

5.7 l Gowen andSmith 1211 

0.72 n Johnk and HanraWy [22] 

Theoretical predictions 

Equation [28] - 

Classical - - - 

2 5 IO I00 
Equation [2] + 

Y+ 

FIG. 4. Inner laws for T+. 

DISCUSSION AND CONCLUSION 

Referring to Fig. 2, the present inner law for u+ given 
by equation (26) is seen to be in exceptional agreement 
with the data and with the van Driest equation. The 
small difference between equations (1) and (26) reflects 
the effect of the unreplenished layer of fluid on the 
momentum transfer in the wall region. Similarly, Fig. 4 
reveals a good agreement between equation (28) and 
experimental data for T+ for Pr as large as 64. The 
important effect of the unreplenished layer of fluid on 
heat transfer is reflected in the growing incompatibility 
between equations (2) and (28) with increasing Pr. 

In order to compare equation (28) with classical 
inner laws for 7’+ which are obtained from equation 
(29), it is necessary to introduce an approximation for 
the turbulent Prandtl number Pr,. It is the uncertainty 
concerning Pr, or F” within the wall region that poses 
one of the more nagging problems in the classical 
approach to analysing turbulent convection heat 
transfer. Because of a general lack of confidence on this 
issue, the usual practice in the classical approach to 
turbulence has been to simply set Pr, equal to a 
constant of the order of unity (some investigators 
choose Pr, = 0.9). For the sake of comparison, equa- 
tion (29) is integrated with E, specified by the van 
Driest equation and with Pr, set equal to unity. The 
predictions for A and T+ obtained by this approach 
are compared with the results of the present analysis in 
Figs. 3 and 4. In addition, calculations obtained for A 
by White [12] on the basis of the Spalding [5] 
equation for E,,, are shown in Fig. 3. 

In view of the uncertainty in Pr, near the wall, it is 
particularly interesting to find such a high degree of 
compatibility between the present analysis and the 
very simple classical analysis. When confronted with 
essentially the same problem of explaining the success 
of the classical analysis with Pr, = 1, Kays [13] 
concluded that the E, he used (after Deissler [ 143) may 

be “truly the eddy diffusivity for heat in the sublayers 
and that we still do’ not know accurately the eddy 
diffusivity for momentum in the sublayers”. Spalding 
[15] put it this way, “. . Pr, is obtained by dividing 
one uncertain quantity (E,) by another (Q); and, when 
it exhibits excessive variability, it is hard to know how 
to distribute blame . . even when a fixed value of Pr, 
appears explicitly in a turbulence model, it will be 
associated not with the actual turbulence viscosity but 
with the fictitious one . . . ; the resulting value of EH may 
be correct, even when the predicted F, is not”. Given 
this level of uncertainty in the classical approach, the 
merit of the surface rejuvenation concept as a sup- 
plemental tool for analysing turbulent convection heat 
transfer stands out. Althollgh this model of the burst 
phenomenon does not necessitate the use of classical 
eddy diffusivities or turbulent Prandtl number, this 
modeling concept recently has been utilized to develop 
theoretical predictions for E, and Pr, within the wall 
region [16-18, 231. 

As further evidence of the viability of the general 
surface renewal model of wall turbulence, predictions 
for the mean frequency of the burst process S obtained 
from equations such as equation (23) have been 
compared with experimental data for the mean fre- 
quency of wall turbulence fluctuations for various 
applications [23-271. The predictions for Shave been 
found to be fully compatible with the experimental 
data. 

In conclusion, the strength of the model of wall 
turbulence put forth in this paper is felt to be its sound 
physical basis and the use of modeling parameters such 
as S and i? which are measureable. It is believed that 
this approach will lead to better predictive capabilities 
for handling turbulent transport in the critical wall 
region and will help to clear up questions concerning 
Pr,. 
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LE MODELE DE LA TURBULENCE DE PAR01 PAR RENOUVELLEMENT 
A LA SURFACE: LOIS INTERIEURES POUR uf et Tf 

RCum&Une formulation du modtle de renouvellement en surface par des bouff&s turbulentes est couplie 

h l’approche classique du noyau turbulent pour obtenir les lois inttrieures pour la vitesse u+ et la temp&rature 
T+ toutes deux adimensionnelles, dans le cas des icoulements pleinement turbulents. La prdvision de u+ est 
en bon accord avec la loi connue de van Driest. De plus, celle de T+ s’ accorde rrt% bien avec les donnCes 

expkrimentales dans une large gamme de nombres de Prandtl. 

DAS MODELL DER WANDTURBULENZ MIT ERNEUERUNG DER OBERFLACHE,: 
INNERE GESETZM;IBIGKEITEN FiiR tl+ IJND T’ 

Zusammenfassung--Eine wichtige Beschreibung des Oberflachenerneuerungsmodells fiir den Vorgang beim 
Zerplatzen eines Wirbels wird mit der klassischen NIherung fiir den turbulenten Kern gekoppelt, urn innere 
GesetzmIBigkeoten fiir die Verteilung der dimensionslosen Geschwindigkeit u+ und Temperatur T+ fiir 
ausgeprigte turbulente Striimungen herzustellen. Die Vorhersagen fi_ir u+ werden in einer guten 
Obereinstimmung mit den wohlbekannten inneren GesetzmgRigkeiten von van Driest gefunden. Dariiberhi- 
naus wurde such gezeigt, daR sich die Vorhersagen fiir T + in einer vorziiglichen Ubereinstimmung mit 

Versuchswerten fiir einen groI3en Bereich von Prandtl-Zahlen befinden. 

MOAEJlb 06HOBJIEHHII IIOBEPXHOCTM B CJIYYAE IlPMCTEHHOI;1 
TYP6YJIEHTHOCTM: BHYTPEHHME 3AKOHOMEPHOCTM PACnPEQEnEHM% 

u+ M T‘ 

AHHOTPUHR ~ OmK3 W3 3@CKTUBHbIX +OpMynHpOBOK MOUe”H 06HOBJIeHHB nOBepXHOCTH II331 OnBCaHAB 

npouecca Typ6yneHTHOrO BbI6pOCa o6aenmieHa C KJtaCCW’ieCKHM OnHCaHReM Typ6yneHTHOrO flapa 

C ue,,bK) BbIRBneHHB B”yTF”HI%X 3aKOHOMepHoCTefi paCnpeneneHHii 6e3pa3MepHbtX CKOpoCTH U+ A 

TeMnepa-rypbl T + npH nO,,HOCTbP= pa3BHTOM Typ6yJleHTHOM Te4eHHA. Hai&eHo, ‘IT0 paCqeTHbIe 

3HaqeHHB u + XOpOmO OnHCb,BaK)TCR H3aeCTHblM 3BKOHOM Ban ApecTa. KpoMe TOrO nOKa3aH0, ‘IT0 

pacsel-Hble 3Ha9eHAII T + XOpOmO COr,,acyH,TCB C 3KCnepHMeHTanbHblMU ,IaHHblMH B mHpOKOM 

nAana30ne 3HaqeHBB qncna npaHnTna. 


